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ABSTRACT

Analytical techniques using estimation theory is applied for remote

sensing of soil parameters in the presence of noise. Expressions for the

variance and the best estimate of the parameters are derived for both the

discrete and continuous sampling in the time domain. These derived expressions

are applied to evaluate the variance and the best estimate of the amplitude

and damped frequency of compressional waves in a viscoelastic medium from the

received signal observed over a continuous period of time. The received signal

is corrupted by noise, whose complete statistical description is available for

all values of time. In our case the noise is assumed M be white Gaussian. The

error of estimation of the parameters increases with the damping coefficient

of the system.



XNTRODUCTION:

The recovery of essential engineering data for the efficient utilization
of the sea floor is tedious and expensive. For this reason, remote sensinq
techniques are used to estimate the soil parameters. Any acoustic signal re-
ceived from the ocean bottom contains information about the soil along with
unwanted noise; so the probiem reduces to an estimation of the soil parameters
 U,; Ug,...U ! from the received signal R t; Uq, U2,...U ! if we assume that, an n
complete statistical description of noise N t; Uq,. ~ .U ! is known. Then then

actual signal S t; Ug,...U ! isn

S t; Ugg...U ! ~ R t; Ug, . ~ U ! � N t; Uyg ~ ..U !
n

j g ~ ~ n

The well-known techniques from estimation theory can be used in estimating
the soil parameters. Ideally, one wishes to find estimates that will yield max-
imum precision and if one cannot get maximum precision, at the least one has to
indicate the precision of estimate. Our measure of the precision of the estimate
U» from the actual value U. The estimate U» can be either an unbiased or a
biased estimate. The biased estimate is a function of the sample size and the
parameter U. However, we will sample our data in such a manner as to get an
unbiased estimate U*. In such a case, the measure of the precision of estimate,
E  U* � U! ! reduces to Var U»! and E U"! = U. Var U»! is the variance of U»
and E denotes the expectation value.

In general, the received signal R t; U~,...U ! may contain N parameters. For
n

Convenience of discussion, let us consider the case when the received signal con-
tains only one parameter U, which has to be determined from observation R t,U!.

 l,2!From estimation theory ', we know that the variance of U* must obey the inequality

 �,! '! /
E   �  logP! / +! !



where P denotes the joint probability density of the signal R t! and the

parameter U. The equality sign in Equation �! is possible only if:

 i! the conditional probabi]j ty density function R for a given value
of U and U, P2 R/U*; U! is ihdependent of U

= K U!  U*-U!
BU

where Pg U*, U! is the joint probability density of U* and U. For an unbiased

estimate of U, E U*! = U. Then, Equation �! simplifies to

Var U*
l

E �1og P! /dU!

and equality sign holds if the conditions  i! and  ii! mentioned above are

satisfied.

In general, there may be many unbiased estimates of U. But at best, only

one efficient estimate of U can exist. In such a case, the unique non"constant

solution U* of Equation �!

3  log P!/3U = 0 �!

is the efficient estimate

In the next two sections, the expressions for an efficient estimate and the

precision of the estimate ie derived for both discrete and continuous observation

times. The results are applied in the final section to find from the received

signal the variance and the best estimate of the amplitude and frequency of the

compressional waves observed over a continuous period  -T,T! in a viscoel,astic

medium. The noise in the received signal, which is assumed to be white Gaussian,

is due to the inhomogeneities in the medium.



OBSERVATION AT DISCRETE TINES

Let the received signal be observed at times t~, tg,...t and let the values
n

af R, S, and N at time t. be R./ S J and N,, respectively  i = 1,2,...n!. One
i 1 i 1

nas then

R, = S. + N. ~ i = lt2~ ~ ,.n ~
1 1 1 �!

without loss of generality, one can assume that E N t!! 0. The Gaussian noise

N t! is then completely described by its covariance function p s.t! = E N t!N s! ! .

For the discrete sample, the noise N,  t! is described by its covariance matrix
i

relations

i 1 g2g ~ ~ rn �!

lgj = lg2g iin ~

From these two equations, it can also be shown that

. th th
klere  g !, denotes the i component of the k eigen-vector. It will now be con-

k i

venient to introduce the vector notations

 R], Rg, ... R !
n

 Sg, Sg, ... S !
n

 N!, Ng, ... N !
n

and their projections on the eigenvector !. are r,, s,, and n., respectively.
i i i i

For example,

n. = $. N = K  f,!.N.
1 7 j

j

p.. = p t..t,!, which is a nxn matrix for n samples. This matrix possesses n real
i] 1

non � negative eigen values, A., and n real normal eigen vectors $ satisfying the



.'n» projection of Equation �! on $ is then

i = 1,2, ... n �0!
s. + n,,

1 1 i

Consider now the random variables n,. Since the N. are by hypothesis
i 3

separately and jointly Gaussian, Equation  9! indicates that the n. are also

separately and jointly Gaussian. Hence,

E n ! = E  $.! . E N ! = 0
i . i j j

j

lg2g ~ n

and

K n n ! = Z Z  $ !,  f !, E NN!ki 1 j i

K E Pi �k!k  el! - Xkdklij kk 1 j kkl

after using Equation  S! . The variables n, are therefore independent Gaussian
i

Ia condition which will be assumed in the following unless stated otherwise! the

joint distribution function for the n, is
i

 -1/2 E n /K.!
"i m m

I   X,!
�m!

i=1

�2!

From Equation  9! and the fact that the $. are orthonormal, it is seen that
i

=ne Jacobian of the transformation  9! is unity, so that �2! is the joint density

f unct ion, P, o f the N, as well. One then has
n
2 4 n~.

R; U! =-log  �'! vr  A, ! !-1/2 Z in' i
r

log p R r ~ i ~ ~ �3!

variates with mean zero and variance E n. ! = A .. Hence, if X. y' 0,  i=1,2, ... n!
i



An optimum value of Equation �0! for a given parameter U is 3r./ !u = 0.3.

Hence=

I!n, Bs .
2 1

au '!u

 !s,
I!log P/BU = E  r. � s.!

BU 1 3.
i i

�5!

 !s .

E   ~! ! =E   � ! ! lo P 2 1 i 2
aU, X, BU

J.

�6!

Equations �5! and �6! can be written in an alternative form not explicitly

involving the eigenvectors and. eigenvalues of p. Let the vector F be defined by
S = PF and let the projection of F on Q. by f,  i = 1,2, ..., n!. One has then

i 1

s. = A,f, and since A. is independent of U,
1 1 1 1

Bs,  !f,
3. i

BU BU
�7!

The right side of Equations �2! and �3! can now be written respectively as

Bf, 3f,  !s,
3.

Z
 !U i

22 2222 d
BU aU

Since the scalar product of two vectors in independent of the coordinate system

used, one obtains finally

+
 R � G! <18>

BU BU

3s

BU
�9!

The two basic quantities necessary to find an efficient estimate of U and a

measure of precision of estimate are tI! log p!/3U! and E   ! log p/I!U! !. They are

given in Equations �5! and �6! after substitution of Equations �3! and �4!.



whexe

�0!

The above calculations can be readily modified to treat the case in which

one or more of the eigenvalues of p vanishes. For simplicity, only the results

for the case of a single vanishing eigenvalue will be given here. Let A. 0,
1

A. /0, jgiif
3

as,
i

aU

Then an estimate U which, with probability one is equal to U, can be obtained by

+ + +
solving the equation Q. ~ S Q. R for U. If

i 3.

as,
i 0

av

the usual estimation theory applies. In using �5! and {16!, however, the terms

on the right involving X, are to be omitted.

OBSERVATION AT CONTINUOUS TIHES

The results of the preceding section can be extended to treat the problem

of estimating u, when R t! is observed continuously during the time interval

 o, T!, by passing ta the limit as m, the number of times of observation of R t!

in  O,T!, approaches infinity. As m increases, the points t. must partition
i

 Q,T! into smaller and smaller intervals as in the usual definition of the

Riemann integral.

As m ~ ~, the limiting eigenvalue problem Equations �! and �! becomes

{21!



T

r Q.  t! $.  t! dt = d .. i
i j 1.!

i,j = li2, ... in �2!

The projection n. of N on the eigenvectors of p is
1

n. = N  t!  t .  t! dt
3.

�3!

0

as,

 r � s! = E �  r: � s!dr1 i

i i . A. aU i i
J. 1

as,
t!Esp P

aU X. 3U
i

�4!

and the equation for a measure of the precision of estimate is

as, 1 as.
E   ! ! =E   ! E   ! drau = x, av i. aU

i i 0

�5!

In Equations {'4! and �5!, however, the X, are the eigenvalues of the Fredholm
i

equation

r p t, t'!Q  t' ! dt' = A$ t!
0

�6!

and the r. and s, are projections of R and S on the ~ormalized eigenfunctions
1 1

p,  t!, of �! . That isi
1

As before, it can be readily shown that the n. are independent Gaussian variables
i

with mean zero and variance il..z
The basic quantities of the estimation theory for observation at continuous

time can be now obtained by generalizing Equations �S! and  l6!. The equation

for efficient estimate is



S t,U! I!,  t! dt
1

0

�7!

A in Section I, an alternate form!u3.ation can be given, by defining

S t! = p t,t'!F t'!dt,'
�8!

which is the analgops equation for the continuous time of Equation �0! in
Section X. Then, in a forrnal way one can obtain

T

 R t;U! � S  t.'U! '! St ! lo P 3F  t!
BU  !U

0

�9!

T

~l~cl P! g! SR  t! U SS t;U!
aU = aU aU

0

�0!

which give the basic quantities in closed form. Equations �9! and �0! are
certainly valid if the F t! satisfying Equation �8! possesses a convergent ex-
pansion on the eigenfunctions of p t,t'! . Such, however, is not usually the case.
Generally, there does not exist a square-integrable solution F to Equation �8! .
In certain cases, it has been possible to find families of function F involving
delta functions and their derivatives that satisfy Equation �8! . The F families
in question are substituted in Equations �9! and �0! and families of closed
forms for-

~Blo 9
�1!

and E [  3U

are obtained.

Comparison of these closed forms with the series �4! and �5! can lead to



the recognition of closed forms for the series.

Equations �4! and �5! hold, of course, only if all the I, are different

from zero. If X = 0, A. p 0, j p i, where i is a single given positive integer,
i 3

then if

as.

av
�2!

an estimate of u with zero variance exists. Xt is obtained by solving

/ Q,  t! s  tgU! dt = Q,  t! R t! dt
i i

�3!

00

for u. If

Bs.

Bv
�4!

then the usual estimation theory holds where the terms in Equations �4! and {25!

involving A. are to be omitted.
l.

APPLICATION TO A VISCOEXASTIC KEDIUN:

R{t! A,  rJ ! ~ g t; A,td ! + N t; Aptly !
c c c

�5!

The response of an impulse function or the Green's function for the com-

pressional wave in a viscoelastic medium is given by �@4!

In this section, expressions for the efficient estimate and the variance for

both the amplitude, A, and frequency of compressional waves, to , of an impulsec

function in a viscoelastic medium is obtained The received signal R t; A, e ! C

will consist of the original signal, viz., the impulse function response of the

medium due to the point source g t; A, 4! ! and a general noise function
c

N{t; A, to !. Hence, Equation  l! can be rewritten as
c



agu
V   ! 6 r-r'� t!

Rt
+ 2p'

P u

where

g = g  r-r' yt!
u U

+»

+»0'

  z + k  X + p'!/p + ik z X" + 2p!/p! !g  kz! = 1U

or

  z + u! + 2igu z! g k~z! ~ g
n n n

�7!

where u!, the natural frequency = k  X' + 2p'!/p!
n'

the damping constant =  k/2! [   K" + 2g" ! /p  A ' + 2p ' !

�8!

�9!

and

+ z + +g  k,z! = v g  k,z! = z d r-r'! dt g  r-r';t!exp ik .  r-r'! -izt!! �0!
n u n u

Since we are interested in the time domain response of the point source, let

us take the inverse time Fourier transform of Equation �7! . The time response

g  k, t! is then given by

and p are the comples Lame' parameters. The shear and bulk modulus is given by
and X', while p" and A" are the shear and bulk viscosity. A solution to

Equation �6! is obtained hy taking its space time Fourier transform. The

equation then simplifies to



Q CQ
n 2 2g  k,t! dz exp izt! /   z + 2igz + a1 !2%' n

t <00

exp -Qe t!sin to t 1 � g ! / � - Q ! t >0
n n n

= A exp  - /to t! sin  u! t!
n c

where

k = w / ~l � 4 = k  k' + 2u'!/P!  l - k  I" + 2k"!/� ! k' + 2g'!!!
n

m = v ~l � 4 = k�' + 2u'/ !! il - k �" + 2V"!/� ! k' + 2W'! ! !
c n �2!

 X" + 2	"! k /�P!

Substituting Equation �1! in Equation �5!, the received signal R t;A,z ! isc

R t; A, u! ! = A sin �! t exp -go! t! + N t; A, U> !C C n C

The noise is assumed to be white Gaussian with mean square value N and a co-2

variance function

� 3!

Xt is assumed that a continuous sampling of the received signal is made from
-T < t < T and it is desired to estimate A and �1 frOm this signal. From Equation
�4! an efficient estimate of any parameter 0 for observation at continuous times is

�4!



Here, A, the eigen value, is given by Equation �6!

-T

Since p t,t'! = N 5 t-t'!,  Equation �3! }, the eigenvalue = N

Substituting A in Equation �4! and using Equation �0! for g, the efficient

estimate A for A and M for to is
C C

R t! sin to t. exp -2!a! t! dt
C n

�5}

r
T

sin v t exp -2gu! t! dt
c n

-T

and v is given by
c

T T

A t sin u> t cos m t exp -2/v t!dt = t R t! sin u> t exp -Qz t!dtc C n c n
�6!

The variance of any parameters U for an efficient estimate is

�7}
Var U=

E  
aU

where E    
aU

! !

N

Var 2 =

l  ~~ ! 2dt
dA

exp -2 z t! sin  o t dt
n c

T

2= j

the variance of amplitude, A and freque y



H  Qu +to !
n C �8!

sin 2gu T � cos 2gta T + u! cos L 2Cz T sin 2v t
n n n C

Var M =
�9!

T

"r t exp -2u>  t! cos <a t dt
n C

The variance of A and v are plotted in Figures  l} and �! for various values of
Z. Note that the estimation error increases with increasing value of  . However,
as the system is lightly damped, the error varies over a narrow range.
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